NETT Publications (as of August 2013)

49. **Cho MH et al**: Folliculin mutations are not associated with severe COPD. *BMC Medical Genetics* 9:120, 2008

51. **Castaldi PJ et al**: Genetic associations with hypoxemia and pulmonary artery pressure in COPD. *Chest* 135:737-744, 2009

54. **Benzo R et al**: Integrating health status and survival data: The palliative effect of LVRS. *Am J Respir Crit Care Med* 180:239-246, 2009

55. **Hersh C et al**: Transforming growth factor-β receptor-3 is associated with pulmonary emphysema. *Am J Respir Cell Mol Biol* 41:324-331, 2009

60. **Hunninghake GM et al.** MMP12, lung function, and COPD in high-risk populations. *New Engl J Med* 361:2599-2608, **2009**

61. **Moy M et al.** Multivariate models of determinants of health-related quality of life in severe COPD. *J Rehab Res Dev* 46(5):643-654, **2009**

62. **Matsuoka S et al.** Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. *Am J Respir Crit Care Med* 181:218-225, **2010**

63. **Cho M et al.** Variants in FAM13A are associated with chronic obstructive pulmonary disease. *Nature Genetics* 42:200-202, **2010**

64. **Cho M et al.** Cluster analysis in severe emphysema subjects using phenotype and genotype data: An exploratory investigation. *Respiratory Research* 11:30, **2010**

67. **Chandra D et al.** Perfusion scintigraphy and patient selection for LVRS *Am J Respir Crit Care Med* 182:937-946, **2010**

69. **Kozora E et al.** Improved neurobehavioral functioning in emphysema patients following medical therapy. *J Cardiopulmonary Rehab and Prevention* 30:251-259, **2010**

70. **Benzo R et al.** Physical activity, health status and risk of hospitalization in patients with severe COPD. *Respiration* 80:10-18, **2010**

71. **Hersh C et al.** Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene *Am J Respir Crit Care Med* 182:605-613, **2010**

72. **Sorheim et al.** Polymorphisms in the superoxide dismutase-3 gene are associated with emphysema in COPD. *COPD* 7:262-268, **2010**
73. **Foreman M et al**: Polymorphisms in surfactant protein D are associated with COPD. *Am J Respir Cell Mol Biol* 44:316-322, 2011

76. **Lipman et al**: On the follow-up of genome-wide association studies: An overall test for the most promising SNPs. *Genetic Epidemiology* 35:303-309, 2011

77. **Hersh et al**: SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. *Am J Respir Crit Care Med* 183:1482-1489, 2011

78. **Puhan et al**: The minimal important difference of exercise tests in severe COPD. *Eur Resp J* 37:784-790, 2011

87. **Come et al**: Lung deflation and oxygen pulse in COPD: Results from the NETT randomized trial. *Respiratory Medicine* 106:109-119, **2012**

88. **Aminuddin et al**: Genetic association between human chitinases and lung function in COPD. *Hum Genet* 131:1105-1114, **2012**

89. **Wilk JB et al**: Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. *Am J Respir Crit Care Med* 186:622-632, **2012**

90. **Chandra D et al**: Optimizing the 6-min walk test as a measure of exercise capacity in COPD. *Chest* 142(6):1545-1552, **2012**

91. **Kim V et al**: Weight gain after lung volume reduction surgery is related to improved lung function and ventilatory efficiency. *Am J Respir Crit Care Med* 186:1109-1116, **2012**

92. **Puhan M et al**: Large-scale international validation of the ADO index in subjects with COPD: an individual subject data analysis of 10 cohorts. *BMJ Open* 2:e002152, **2012**

94. **Benzo R et al**: Factors to inform clinicians about end of life in severe COPD. *COPD Journal of Pain and Symptom Management* 46:491-499, **2013**

95. **Kim V et al**: Severe chronic bronchitis in advanced emphysema increases mortality and hospitalizations. *COPD: Journal of Chronic Obstructive Pulmonary Disease* 10:667-78, **2013**